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______________________________________________ 
Abstract 

 The resistance of the metallic conductor in transmission lines is the primary source of losses. Power is 
dissipated in a section of the line as the current overcomes the ohmic resistance of the line and it is directly 
proportional to the square of the root mean square (r.m.s) current travelling through the line. This research paper 
develops a model for the effect of temperature change on the resistance of transmission lines losses in electrical 
power network. The mathematical notations of power dissipation and transmission line efficiency were used as input 
parameters for the development of the model.The result of the model shows that the resistance of the transmission 
lines increases inversely with the temperature. An initial temperature of 5700K gives rise to corresponding final 
temperature of 5520K. Similarly, an initial temperature of 5600K gives rise to a corresponding final temperature of 
5420K. As the temperature ratio increase, the transmission line offers more resistance to the flow of electric current, 
thus increasing the resistance of the transmission line. The transmission lines offer a resistance of 24.21 Ohm to the 
flow of current at a temperature ratio of 0.9684. Throughout the transmission lines, a temperature ration of 0.9929 
gives a resistance of 24.82 Ohm to the flow of electric current.The model developed stresses the inverse relationship 
between the temperature change and the resistance of the transmission lines. 
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______________________________________________ 
I. Introduction 

When currents flow in a transmission line, the characteristics exhibited are explained in terms of magnitude 
and electric field interaction [6]. Thephenomenon that results from field interaction is represented by circuit 
elements or parameters. A transmission loss consists of four parameters which directly affect its ability to 
transfer power efficiently. These elements are combined to form an equivalent circuit representation of the 
transmission lines, of the transmission losses [[4],[12]]. The parameters associated with the dielectric losses that 
occur is represented as a shunt conductance. Conductance from the line to line or a line to ground accounts for 
losses which occur due to the leakage current at the cable insulation and the insulators between overhead lines. 
The conductance of the line is affected by many unpredictable factors, such as atmospheric pressure, and is not 
uniformly distributed along the line [5]. The influence of these factors does not allow for accurate 
measurements of conductance values. The leakage in the overhead lines is negligible, even in detailed transient 
analysis. This allows this parameter to be completely neglected [[10], [16]]. 

 In a transmission system, the primary source of losses incurred is in the resistance of the conductors. For a 
certain section of the line, the power dissipated in the form of useless heat as the current attempt to overcome 
the ohmic resistance of the line, and is directly proportional to the square of the r.m.s current travelling through 
the line. It follows that the losses due to the line resistance can be lowered by raising the transmission voltage 
level, but there is a limit at which the cost of the transformers and insulators will exceed the savings [[1], [13], 
[14]]. The efficiency of a transmission line is defined as [[3], [15]]. 

ߟ = ೃ
ೄ
= ೃ

ೃାಽೞೞ
  1 

Where PR is the load power and PLossis the net sum of the power lost in the transmission system. As the 
transmission line dissipates power in the form of heat energy, the resistance value of the line changes. The line 
resistance will vary, subject to maximum and minimum constraints, in a linear fashion [[7], [11], [14], [12]]. 

 Given that R1 = resistance at some temperature T1 and R2 is the resistance at temperature T2: 

Then 

ܴଶ = ܴଵ ቀ
ଶଷହା మ்
ଶଷହା భ்

ቁ  2 

Provided that T1 and T2 are given in degree centigrade. 

 In the transmission line, the capacitive resistance is due to the interaction between the electric field from 
conductors to conductors and from conductor to ground. The alternating voltages transmitted on the conductor 
causes the charge present at any point along the line to increase and decrease with the instantaneous changes in 
the voltage between conductors or the conductors and ground. This flow of charge is known as charging current 
and is present even when the transmission line is terminated by an open circuit [[8], [9]]. The alternating 
currents present in a transmission system are accompanied by alternating magnetic fields. The interaction of 
these magnetic fields between conductors in relative proximity creates aflux linkage. These charging magnetic 
fields induce voltages in parallel conductors which are equal to the time rate of change of the flux linkages.The 
constant of proportionality is called inductance [[5], [16]]. 
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݁ = ܮ ௗ
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The mutual coupling will cause voltages to be induced as a result of the relative positioning of the lines. 
The induced voltage will add vector/ally with the line voltages and cause the phases to become unbalanced [[6], 
[13]]. When a 3-phase set is unbalanced, the lines do not equally share the current. Looking at only the simple 
resistive losses in the circuit, and noting that the power loss is directly proportional to the square of the 
magnitude of the current flowing in the line; it is easy to see that the losses in one line will increase significantly 
more than the reduction of losses in the other lines. This suggests that a simple way to minimize the total I3R 
losses is to maintain a balanced set of voltages [[8], [10]]. The mutual coupling also increases the total line 
reactance. The line reactance further adds to the losses because it affects the power factor on that line [[3], [5], 
[2], [13]]. 

The effect of this mutual coupling is often reduced by performing a transposition of the transmission lines 
at set intervals [3]. The transposition governs the relative positioning of the transmission lines. Each phase is 
allowed to occupy a position, relative to the other two phases, for only one third of the distance. The phases are 
then rotated at their positions relative to one another. The actual phase transposition usually, does not take place 
between the transmission towers. A certain safe distance must be maintained between the phases and because of 
the need to maintain the required distances between the phases, transposition is most likely to take place at a 
substation. 

II. Materials and Method 

Development of Mathematical Model 

The resistance of the conductors is a major source of losses incurred in a transmission system. 

The power dissipated is 

ܲ = ݅ଶܴ            4 

ܴ = 


            5 

Where; 

P = Power dissipated 

i= Current 

e= Resistivity of the conductors(Ωm) 

L= Length in meters 

a= Cross sectional area in ݉ଶ 

The resistance increases linearly with temperature and resistance at a temperature ‘t’ given by: 

ܴ௧ = ܴ(1 + ܽ6                    (ݐ 

Where; 

ܴ௧ = Resistance at ݐܿ 
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ܽ = Temperature Coefficient of resistance at 0ܿ 

ܴ = Resistance at 0ܿ 

Between two intermediate temperatures t1and t2 , 

ோమ
ோభ
= ଵା௧మ

ଵା௧భ
                     7 

Where: 

ܴଵ = Initial resistance  

ܴଶ = Final resistance  

a = Temperature coefficient 

 ଵ = Initial temperature; measured inݐ  

 ଶ = final temperature; measured inݐ  

ோమ
ோభ
=

భ
ೌబ
ା௧మ

భ
ೌబ
ା௧భ

                     8 

Let ଵ
బ
= ܶ; 

Then, 

ܴଶ = ܴଵ
்ା௧మ
்ା௧భ

                     9 

Where; 

ܽ= Constant temperatures that depend on some factors, T = Absolute temperature, 273݇. 

It implies that the losses due to the line resistance can be reduced by raising the transmission voltage level, even 
though, there is a limit to which the lost of the transmission and insulators will exceed the savings. 

For the transmission line,  

Efficiency   ƞ = ೃ
ೄ
= ೃ

ೃାಽೞೞ
          10 

Where; 

ோܲ  = Load power 

ܲ௦௦ = Net sum of the power lost. 

From equation (6) 

ܴଶ = ܴଵ 
ܶ + ଶݐ
ܶ + ଵݐ

൨ 
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Let ܶ + ଵݐ = ܶ  ,ଵߠ + ଶݐ =  ଶߠ

Then, 

ܴଶ = ܴଵ ቂ
ఏమ
ఏభ
ቃ          11 

ܴଵ = ܴଶ ቂ
ఏభ
ఏమ
ቃ            12 

Equation (11) is the model developed for the variation of temperature change on the resistance of transmission line 
losses in electrical power network. 

III. Discussion of Results 

By analyzing the correlation of power consumption and temperature, the temperature sensitivity is determined 
for each type of customer. The impact of the temperature change on the power consumption of each service area can 
therefore be estimated by considering the class and energy consumption of all the customers within the study area. 
The temperature sensitivity analysis of customer power consumption provides important information for the load 
forecast of the distribution system in a very accurate manner. With the temperature change, the power loading of the 
service area is determined and load transfer among the distribution feeders and main transformers can be obtained 
by performing the optimal switching operation. 

The resistance of the metals in transmission lines is the primary source of losses. Power is dissipated in a 
section of the line as the current overcome the ohmic resistance of the line and it is directly proportional to the 
square of the root mean square (rms) current travelling through the line. Change in temperature affects the line 
resistance. 

The variations of the temperatures are illustrated in Figure 1. The initial temperatures decrease progressively 
throughout the study period while the final temperatures increase accordingly, thus suggesting that the two 
temperatures are inversely related. Thus, an initial temperature of 5700K gave a corresponding final temperature of 
5520K. In the same manner, an initial temperature of 5600K gave a final temperature of 5420K. 

Figure 2 shows the relationship between the final resistance of the transmission lines and the temperature ratio. 
From the figure, it is observed that as the temperature ratio increases, the transmission lines offer more resistance to 
the flow of electric current thus increasing the resistance of the transmission lines accordingly. At temperature ratio 
of 0.9684, the transmission lines offered a resistance of 24.21Ω to the flow of current. 

A temperature ratio of 0.9929 also gave a resistance of 24.82Ω to the flow of electric current through the 
transmission lines. 
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Figure 1:ߠଵ versus ߠଶ 

 

Figure 2:ܴଶ versus ఏమ
ఏభ
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IV. Conclusion 

The effect of temperature change on the resistance of transmission line losses in electrical power network has 
been established. Change in temperature affects the line resistance. For small change in temperature, the resistance 
increases linearly with temperature. The losses due to the resistance can be reduced by raising the transmission 
voltage level even though there is a limit to which the cost of the power transformers and insulators will exceed the 
savings. 
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